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Abstract: A large amount of agro-industrial waste is produced worldwide in various agricultural
sectors and by different food industries. The disposal and burning of this waste have created
major global environmental problems. Agro-industrial waste mainly consists of cellulose,
hemicellulose and lignin, all of which are collectively defined as lignocellulosic materials. This waste
can serve as a suitable substrate in the solid-state fermentation process involving mushrooms.
Mushrooms degrade lignocellulosic substrates through lignocellulosic enzyme production and utilize
the degraded products to produce their fruiting bodies. Therefore, mushroom cultivation can be
considered a prominent biotechnological process for the reduction and valorization of agro-industrial
waste. Such waste is generated as a result of the eco-friendly conversion of low-value by-products
into new resources that can be used to produce value-added products. Here, we have produced a brief
review of the current findings through an overview of recently published literature. This overview
has focused on the use of agro-industrial waste as a growth substrate for mushroom cultivation and
lignocellulolytic enzyme production.

Keywords: lignocellulosic materials; lignocellulolytic enzymes; mushroom cultivation;
solid state fermentation

1. Introduction

The rapidly growing global population and expansion in the agriculture sector and food industries
have resulted in the generation of a large amount of agro-industrial waste annually. Agro-industrial
waste is defined as the waste that is generated during the industrial processing of agricultural or animal
products or the waste obtained from agricultural activities [1,2]. The waste can further be divided into
two types, agricultural residues and industrial residues, respectively [2–5]. Agricultural residues consist
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of field residues and process residues. Field residues are generated during the crop harvesting process
and are made up of leaves, roots, stalks, straw, seed pods and stems. Process residues are generated
during the further processing of the crops and are made up of husks, peels, pulp and shells. Asia is the
largest producer of agricultural residues at 47%, followed by the United States (29%), Europe (16%),
Africa (6%) and Oceania (2%) [6]. Industrial residues are residues that are produced by the food,
fruit and vegetable processing industries and include bran, peels, pomace and bagasse. Generally,
most agro-industrial waste is disposed of in landfills or burned, leading to various environmental
problems and pose potential harm to the health of humans and wildlife [5,7,8]. However, agro-industrial
waste can potentially be converted into different high-value products, including biofuels, value-added
fine chemicals and cheap energy sources for microbial fermentation and enzyme production [7–9].
These waste products can represent a source of energy, as well as sources of carbon. Additionally,
this form of waste is a source of the nutrients that are required for mushroom growth and lignocellulolytic
enzyme production via solid state fermentation [9–11]. Therefore, in this study, we have summarized
the current findings on the use of agro-industrial waste as growth substrates for mushroom cultivation
and lignocellulolytic enzyme production.

2. The Composition of Agro-Industrial Wastes

Agro-industrial waste is a major lignocellulosic component. This form of waste includes cellulose,
hemicelluloses and lignin, which are normally referred to as “lignocellulosic materials”. Generally,
cellulose is the most abundant component, followed by hemicellulose and lignin (Figure 1).

Figure 1. Main composition of agro-industrial wastes.

Cellulose is a homopolymer consisting of a linear chain of several hundred to many thousands of
β-anhydroglucose units (β-1,4 linked d-glucose units). Each of the β-anhydroglucose units consists
of three hydroxyl groups (OH), one primary (C6 position) and two secondary (C2 and C3 positions)
hydroxyl groups, each of which exhibits different polarities and is capable of being involved in the
intra- and intermolecular hydrogen bonds [12,13]. The intra- and inter-chain hydrogen bonding network
makes cellulose a relatively stable polymer and gives the cellulose fibrils high axial stiffness [14].

Hemicellulose is a heteropolymer consisting of a polysaccharide backbone. Its structure greatly
varies depending on the sugar units, chain length and the branching of the chain molecules.
Typical binding sugars in hemicelluloses are pentoses (xylose and arabinose), hexoses (mannose, glucose,
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and galactose), hexuronic acids (4-O-methyl-d-glucuronic acid, galacturonic acid, and glucuronic
acid), small amounts of rhamnose and fucose, and an acetyl group [12]. These binding sugars can
assemble into a range of various hemicellulose polysaccharides, such as galactan mannans, xylans,
xyloglucan and β-1,3/1,4-glucans [12,15].

Lignin is a rigid aromatic, amorphous and hydrophobic polymer that has been recognized as a
highly branched polymer with a variety of functional groups, such as aliphatic, phenolic hydroxyls,
carboxylic, carbonyl, and methoxyl groups. These functional groups give lignin a unique and very
complex structure [16–18]. The nature of the lignin polymerization reactions results in the formation of
a three dimensional, highly-branched, interlocking network of essentially infinite molecular weight.
Lignin composition and content are influenced by plant species and the environment [17,18].

The composition of cellulose, hemicellulose and lignin in agro-industrial waste depends upon
the species, tissue and maturity of the plant [2,4,5,12]. The values of the main components in some
agro-industrial waste are shown in Table 1.

Table 1. Main composition and carbon/nitrogen (C/N) ratio of some agro-industrial wastes.

Agro-Industrial Wastes
Composition (% Dry Weight Basis) C/N

Ratio
Reference

Cellulose Hemicellulose Lignin

Apple pomace 43 24 20 48/1 [19]
Banana straw 53 29 15 40/1 [20]
Banana leaves 55 20 25 38/1 [21]
Barley straw 23–33 21–22 14–19 82–120/1 [22,23]
Canola straw 22 17 18 33–45/1 [23]
Coconut husk 24–43 3–12 25–45 75–186/1 [24,25]
Coffee husk 43 7 9 40/1 [26]
Corn bran 34 39 49 ND [25]
Corn cob 35–45 35–44 11–15 50–123/1 [27,28]

Corn stalk 34–61 19–24 7–9 57–80/1 [25,29]
Corn straw 30 25 8 50/1 [25]
Cotton stalk 58 14 22 70–78/1 [22]

Grasses 25–41 25–50 7–30 16–42/1 [30]
Hardwoods 40–55 24–40 18–25 150–450/1 [30]

Oat bran 49 25 18 12/1 [25]
Oat straw 25–40 21–27 17–18 48–83/1 [22,23]
Rice bran 35 25 17 12–48/1 [25]
Rice husk 35 25 20 30–80/1 [31]
Rice straw 32–39 23–24 18–36 35–72/1 [29,32]
Rye straw 38 31 19 82/1 [22]

Beech sawdust 41 33 22 100–331/1 [33]
Birch sawdust 40 36 20 700/1 [33]
Oak sawdust 25–38 18–29 18–25 162–200/1 [31,33]
Pine sawdust 42 25 28 724–1070/1 [33]

Poplar sawdust 44 32 21 46–71/1 [33]
Rubber tree sawdust 38 25 15 177/1 [34]

Spruce sawdust 42 26 28 763–1000/1 [33]
Softwood 45–50 25–35 25–35 310–520/1 [30]

Sorghum stalk 17 25 11 45/1 [25]
Sorghum straw 36 26 8 20–46/1 [35,36]
Pineapple leaf 36 23 27 49/1 [37]
Pineapple peel 22 75 3 77/1 [38]

Potato peel 35 5 4 25/1 [39]
Orange peel 9–14 6–11 1–2 102/1 [40,41]
Lemon peel 12 5 2 ND [41]

Tomato pomace 9 5 5 ND [42]
Banana peel 12 10 3 18–29/1 [22]
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Table 1. Cont.

Agro-Industrial Wastes
Composition (% Dry Weight Basis) C/N

Ratio
Reference

Cellulose Hemicellulose Lignin

Soya stalk 35 25 20 20–40/1 [43]
Sugarcane bagasse 30–45 26–36 11–23 50/1 [22,29,44]
Sugarcane straw 36–41 21–31 16–26 70–120/1 [45,46]
Sunflower stalk 42 30 13 97/1 [43]

Oil palm empty fruit
bunch 45–51 28–29 12–15 77/1 [47,48]

Water hyacinth 21 34 7 11/1 [10]
Wheat bran 30 50 15 19/1 [25]
Wheat straw 27–38 21–29 18–21 50–80/1 [22,25,49]
Walnut shell 36 28 43 175/1 [50]
Almond shell 38 29 30 61/1 [51]
Chestnut shell 21 16 36 8/1 [51]
Pistachio shell 43 25 16 43/1 [51]
Hazelnut shell 55 34 35 50–58/1 [52]
Olive oil cake 31 21 26 14–17/1 [53]
Oil palm cake 64 15 5 ND [54]

Sunflower oil cake 25 12 8 ND [54]
Cotton seed hull 31 20 18 59–67/1 [55]

“ND” = not determined.

3. Mushroom Cultivation on Agro-Industrial Wastes

Mushroom cultivation is widespread throughout the world and its global production has
significantly increased since 2010 (Figure 2). The Food and Agriculture Organization Statistical
Database (FAOSTAT) reported that China is the largest mushroom producer, followed by the United
States of America and the Netherlands, with global production in 2018 reaching almost 8.99 million
tons. The trend to increase mushroom production is expected to continue in the future.

Figure 2. Data of global mushroom production during 2004–2018 from FAOSTAT [56].

Edible mushrooms are also considered a healthy food because they are rich in proteins,
carbohydrates, fiber, vitamins and minerals while being low in fat [57,58]. Normally, the range
of protein, carbohydrate and fat contents in mushrooms is 15–35%, 35–70% and less than 5%,
respectively [58]. Notably, several species of edible mushrooms are important because of their medicinal
properties. Some edible mushrooms appear to be active against human pathogens, cancer, diabetes,
hypertension, hypercholesterolemia conditions and tumors [57–59]. Today, more than 50 species of
edible mushrooms have been commercially cultivated throughout the world. Most commercial edible
mushrooms belong to the genera Agaricus, Agrocybe, Auricularia, Flammulina, Ganoderma, Hericium,
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Lentinula, Lentinus, Pleurotus, Tremella, and Volvariella (Figure 3). The top four globally cultivated
edible mushrooms include the genera Lentinula (shiitake and relatives), Pleurotus (oyster mushroom),
Auricularia (wood ear mushroom) and Agaricus (button mushroom and relatives) [54,60]. In 2017,
world mushroom production was divided among several genera: Lentinula (22%), Pleurotus (19%),
Auricularia (18%), Agaricus (15%), Flammulina (11%), Volvariella (5%) and others (10%) [60]. Most of the
cultivated edible mushrooms are saprophytic fungi (decomposers) and able to degrade lignocellulosic
materials by producing extensive enzymes (especially lignocellulolytic enzymes). They are then able
to use these materials as nutrients for their growth. Thus, mushroom cultivation is often associated
with the recycling of vast amounts of agro-industrial waste [2–4,54].

Agro-industrial wastes (both agricultural residue and industrial residue) have been used
as substrates in mushroom cultivation. Most agro-industrial waste is defined as low nitrogen
content materials. The carbon/nitrogen (C/N) ratio in agro-industrial waste is varied among different
types (Table 1), and it is an important factor in mushroom cultivation. This ratio has a critical
influence on mycelium growth, mushroom weight, yields and protein content in the fruiting body of
mushrooms [11,61,62]. Therefore, low-level nitrogen substrates for mushroom cultivation are necessary
in that they add organic (cereal bran, cereal shell, soybean meal and manure) or inorganic (ammonium
chloride and urea) nitrogen supplements [63,64]. Several previous studies have found that the protein
content in the fruiting body of mushrooms depends upon both the chemical composition and the C/N
ratio of substrates, as well as the species of mushroom being cultivated [1,64–66]. Different mushroom
species require different C/N ratios in the cultivation substrate in order to obtain the highest production
yield, as is shown in Table 2. Moreover, the addition of various supplements, e.g., epsom salts
(MgSO4·7H2O), gypsum (CaSO4·2H2O) and limestone (calcium carbonate, CaCO3), in the substrates
also support the mycelia growth and fruiting body production of mushrooms [11,61,67].

Figure 3. Examples of some commercially important cultivated mushrooms.
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Table 2. The carbon/nitrogen ratio in substrate to obtain the highest yield of some mushroom species.

Mushroom Species
C/N Ratio (%)

Reference
Minimum Optimum Maximum

Agaricus bisporus 16/1 19/1 22/1 [68]
Agaricus bitorquis 16/1 19/1 22/1 [69]

Agaricus brasiliensis 10/1 26–28/1 50/1 [70]
Agaricus brunescens 16/1 19/1 21/1 [71]

Agaricus subrufescens 16/1 27/1 33/1 [72]
Lentinula edodes 25/1 30–35/1 55/1 [73]

Lentinus sajor-caju 40/1 45–55/1 90/1 [74]
Pleurotus cornucopiae 40/1 45–55/1 97/1 [75]

Pleurotus eryngii 40/1 45–55/1 70/1 [75]
Pleurotus flabellatus 40/1 45–60/1 100/1 [76]

Pleurotus florida 40/1 45–60/1 150/1 [77,78]
Pleurotus ostreatus 40/1 45–60/1 90/1 [78]

Flammulina velutipes ND 30/1 ND [79]
Ganoderma lucidum ND 70–80/1 ND [80]
Volvariella volvacea ND 40–60/1 ND [81]

“ND” = not determined.

Biological efficiency (BE), which is used to evaluate the efficiency of substrate conversion in
mushroom cultivation, is calculated as the percentage ratio of the fresh weight of harvested mushrooms
over the dry weight of the cultivation substrate [67]. A high BE value ensures a high possibility of
utilizing substrates for mushroom cultivation [67,82]. In considering the profitability of mushroom
cultivation, the BE value must be over 50%. Utilization of agro-industrial waste for the cultivation
of mushrooms has resulted in the production of edible proteins for human consumption [2,7,11].
Cultivation methods for edible mushrooms vary considerably around the world and a variation
in the chemical composition of a particular cultivated mushroom has been observed in various
studies. This may be related to the specific mushroom species, the growing substrate and the relevant
environmental conditions [1,2,11]. Many studies have been conducted to test the ability of mushrooms
to grow on different agro-industrial forms of waste, such as wheat straw, barley straw, oat straw,
rice straw, corn straw, corn cob, banana leaves, sawdust, sugarcane bagasse, soya stalk and sunflower
stalk. A combination of agro-industrial waste can be used in mushroom cultivation. The main results
regarding the cultivation of edible mushrooms on different agro-industrial waste, and their proximate
composition values, are shown in Tables 3 and 4.
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Table 3. Biological efficiency and chemical composition of some mushrooms grown on the non-combination of agro-industrial wastes.

Agro-Industrial
Wastes

Mushroom Species Biological
Efficacy (%)

Chemical Composition (% Dry Weight)
Reference

Crude Protein Carbohydrate Fat Fiber Ash

Wheat straw

Agaricus bisporus 47.2–51.1 21.0–27.0 38.0–48.0 3.0–4.0 17.0–23.3 8.0–11.0 [83,84]
Agaricus subrufescens 53.7 28.4 63.2 1.6 6.2 6.8 [85]
Agrocybe cylindracea 61.4 1.5 89.6 0.3 40.4 8.6 [86]
Hericium erinaceus 39.4–43.5 26.8 58.9 3.7 ND 10.5 [87]

Lentinula edodes 66.0–93.1 15.2–15.4 63.7–65.7 1.1–1.5 ND 3.8–4.4 [88]
Lentinus sajor-caju 74.9 22.9 56.0 2.6 7.1 6.6 [89]

Pleurotus citrinopileatus 98.3–105.6 25.3 64.0 2.7 ND 8.1 [90]
Pleurotus columbinus 69.2 2.9 25.9 0.42 5.4 8.5 [91]

Pleurotus eous 75.1 19.5 50.2 2.6 7.8 6.0 [92]
Pleurotus eryngii 48.2 21.5 56.0 2.4 13.5 7.6 [93]
Pleurotus florida 66.4 27.9 51.2 2.4 12.2 8.7 [94]

Pleurotus ostreatus 22.6–52.6 11.6–14.6 47.5–74.4 1.8–2.5 19.1–27.1 8.6–12.0 [86,95]
Pleurotus sapidus 62.2 14.9 48.5 2.0 7.3 6.2 [96]

Barley straw Lentinula edodes 64.1–88.6 15.1–16.8 75.1–77.7 1.9–2.2 ND 5.2–5.8 [88]
Pleurotus ostreatus 21.3 12.8 54.7 29.9 0.9 1.2 [95]

Oat straw Agaricus bisporus 47.2–52.9 26.8–36.2 ND 2.3–3.1 6.6–10.3 9.8–11.3 [97]
Ganoderma lucidum 2.3 9.9 ND ND ND 1.0 [98]

Rice straw

Lentinula edodes 48.7 16.2 78.0 6.0 1.5 3.4 [99]
Lentinus sajor-caju 78.3 23.4 55.0 2.4 7.9 6.8 [89]
Hericium erinaceus 33.9 24.1 60.5 4.2 ND 11.3 [87]

Pleurotus citrinopileatus 76.5–89.2 22.8 64.9 3.2 ND 91 [90]
Pleurotus columbinus 71.4 4.8 27.3 0.3 5.0 7.7 [91]

Pleurotus eous 79.8 29.3 48.0 2.4 8.0 6.2 [92]
Pleurotus eryngii 45.9 21.8 53.0 1.9 13.8 8.7 [93]

Pleurotus pulmonarius 23.5 21.1 ND 5.2 7.0 6.9 [100]
Pleurotus ostreatus 25.6–84.6 12.5–23.4 55.3–57.4 2.8–16.2 7.7–0.7 6.3–13.6 [95,101]
Pleurotus sapidus 64.7 23.4 45.6 1.6 8.0 6.4 [96]
Pleurotus djamor 82.7 24.8 37.7 3.1 22.0 8.3 [102]

Volvariella volvacea 10.2–15.0 36.9–38.1 42.8–42.3 0.8–1.0 4.4–6.0 9.0–10.3 [103–105]
Corprinus comatus 18.0 10.9 76.6 1.9 ND 20.5 [106]

Corn straw
Pleurotus florida 31.6 26.3 31.3 0.5 19.6 5.2 [107]

Volvariella volvacea ND 23.0 13.9 1.4 36.6 11.9 [108]
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Table 3. Cont.

Agro-Industrial
Wastes

Mushroom Species Biological
Efficacy (%)

Chemical Composition (% Dry Weight)
Reference

Crude Protein Carbohydrate Fat Fiber Ash

Corn cob

Agrocybe cylindracea 33.5 14.8 72.4 2.9 17.0 10.1 [86]
Pleurotus columbinus 79.1 1.9 28.5 0.2 4.12 9.3 [91]
Pleurotus cystidiosus 50.1 24.5 40.6 3.0 24.3 7.57 [109]

Pleurotus eryngii 51.8 23.8 54.8 1.9 9.7 7.0 [93]
Pleurotus florida 55.0 29.1 38.2 0.9 22.8 3.5 [107]

Pleurotus ostreatus 31.7–66.1 15.4–29.7 30.8–73.4 2.7–3.4 13.8–29.8 7.1—8.0 [86,109]

Banana leaves
Pleurotus ostreatus ND 15.0 24.9 2.2 5.1 11.2 [62,110]

Pleurotus pulmonarius 17.9 16.9–23.5 26.2 1.9–5.5 5.8–7.2 6.4–10.3 [62,100]
Volvariella volvacea 15.2 23.9 ND ND 8.1 6.1 [111]

Soya stalk

Lentinus sajor-caju 83.0 25.8 52.2 2.8 6.7 7.3 [89]
Pleurotus eous 82.3 30.5 50.5 2.6 9.0 6.5 [92]

Pleurotus ostreatus 85.2 24.7 53.2 2.8 7.2 6.7 [101]
Pleurotus columbinus 90.6 7.4 33.3 0.4 5.1 9.2 [91]

Pleurotus florida 87.6 23.5 57.8 2.5 8.0 8.0 [112]
Pleurotus sapidus 72.7 26.8 24.9 2.1 7.5 7.0 [96]

Sunflower stalk
Lentinus sajor-caju 63.1 21.0 50.7 2.8 7.7 6.9 [89]

Pleurotus eous 61.5 27.4 52.0 2.2 7.9 5.2 [92]
Pleurotus sapidus 45.9 20.1 48.5 2.4 7.3 6.2 [96]

Oil palm empty
fruit bunch

Schizopyllum commune 3.7 6.1 37.4 4.5 0.01 1.94 [113]
Volvariella volvacea 3.6–6.5 33.5–41.0 27.9–45.7 3.7–5.1 7.7–16.0 9.4–9.9 [114]

Cotton stalk
Pleurotus florida 25.1 29.8 37.3 2.2 19.4 8.7 [115]

Pleurotus pulmonarius 42.3 29.3 44.5 3.1 11.3 9.2 [115]
Pleurotus ostreatus 44.3 30.1 40.2 2.1 17.2 8.4 [115]

Rice husk Pleurotus ostreatus 9.5 5.9 48.5 30.9 0.3 14.3 [95]

Sugarcane
bagasse

Lentinula edodes 130.0–133.0 13.1–13.8 73.0–78.9 0.9–1.0 ND 6.2–7.1 [116]
Pleurotus cystidiosus 49.5 22.1 45.2 2.3 22.8 7.5 [109]

Pleurotus djmor 101.7 25.1 45.2 2.1 9.1 4.1 [117]
Pleurotus eryngii 41.3 20.5 49.0 3.1 8.0 7.8 [93]
Pleurotus florida 75.6 8.7 ND 4.0 2.5 0.3 [118]

Pleurotus ostreatus 65.7 27.1 34.9 2.0 29.3 6.7 [109]

Sugarcane straw Lentinula edodes 83.0–98.0 14.4 72.5–78.2 0.7–0.9 NR 6.4–6.5 [116]
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Table 3. Cont.

Agro-Industrial
Wastes

Mushroom Species Biological
Efficacy (%)

Chemical Composition (% Dry Weight)
Reference

Crude Protein Carbohydrate Fat Fiber Ash

Cottonseed hull
Pleurotus florida 13.6 20.0 61.2 11.9 11.9 5.5 [119]

Pleurotus ostreatus 8.9 17.5 65.9 1.2 10.2 5.2 [119]

Cassava peel Pleurotus ostreatus 24.0–26.1 10.5–10.7 73.0–74.6 2.1–2.2 8.5–8.9 7.5–7.7 [120]
Volvariella volvacea 0.6-2.3 11.5–14.3 51.4–53.4 2.4–2.6 0.4–0.5 5.0–6.2 [121]

Hardwood
sawdust Hericium erinaceus 47.5–50.3 24.8 60.9 3.6 ND 10.6 [87]

Acacia sawdust
Pleurotus cystidiosus 36.3 15.7 55.9 2.1 20.1 6.3 [109]
Pleurotus ostreatus 46.4 19.5 51.3 1.3 22.0 5.9 [109]

Beech sawdust
Agrocybe cylindracea 38.3 18.4 70.3 3.4 15.0 8.2 [86]
Ganoderma lucidum 61.2 16.8 77.9 2.2 47.9 3.1 [122]
Pleurotus ostreatus 46.8 16.1 73.6 3.5 15.8 6.2 [86]

Sawdust

Auricularia polytricha 13.9–44.6 10.2 78.4 0.9 ND 4.2 [123]
Pleurotus columbinus 89.1 1.7 25.0 0.2 4.6 9.1 [91]

Pleurotus citrinopileatus 38.4–51.6 24.1 65.6 2.6 ND 7.8 [90]
Pleurotus eryngii 35.5 19.5 52.5 2.4 7.8 7.5 [93]

“ND” = not determined.
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Table 4. Biological efficiency and chemical composition of some mushrooms grown on the combination of agro-industrial wastes.

Agro-Industrial Wastes Mushroom Species Biological
Efficacy (%)

Chemical Composition (% Dry Weight)
Reference

Crude Protein Carbohydrate Fat Fiber Ash

Soya stalk (50%) + rice straw (50%) Pleurotus florida 85.2 22.7 54.9 2.6 7.6 6.5 [111]
Pleurotus ostreatus 81.7 23.0 50.5 2.7 7.7 6.4 [124]

Soya stalk (50%) + wheat straw (50%) Pleurotus florida 78.2 22.4 57.1 2.3 7.5 6.4 [111]
Pleurotus ostreatus 77.7 21.1 52.0 2.6 7.4 6.2 [124]

Wheat straw (50%) + Rice straw (50%)
Hericium erinaceus 32.5–37.2 25.6 60.6 3.9 ND 9.7 [87]

Pleurotus florida 72.3 20.2 53.9 2.3 7.4 6.5 [111]
Pleurotus ostreatus 71.8 20.3 56.0 2.6 7.5 5.9 [124]

Oat straw (80%) + wheat bran (20%) Ganoderma lucidum 2.0–2.5 10.6–12.5 ND ND 47.8–57.7 1.3–1.5 [98]

Cotton stalk (50%) + Cottonseed hull (50%)
Pleurotus florida 17.3 24.5 52.0 3.2 13.2 7.1 [119]

Pleurotus ostreatus 20.2 22.8 58.0 2.9 10.8 5.5 [119]

Acacia sawdust (50%) + corn cob (50%)
Pleurotus cystidiosus 43.6 21.4 44.8 2.8 23.6 7.3 [109]
Pleurotus ostreatus 58.8 18.7 46.9 3.3 24.5 6.7 [109]

Acacia sawdust (50%) + sugarcane bagasse (50%) Pleurotus cystidiosus 41.1 25.6 37.5 1.8 28.5 6.8 [109]
Pleurotus ostreatus 58.9 24.2 37.8 2.5 28.8 6.7 [109]

Sugarcane bagasse (50%) + grasses (50%) Agaricus brasiliensis 44.3 28.3 ND 1.6 5.8 6.7 [125]

Rubber tree sawdust (50%) + rice straw (50%) Flammulina velutipes 123.9 17.0–27.0 58.0–87.0 1.8–7.3 ND 7.3–10.4 [126]

Beech sawdust (50%) + olive pruning residues (50%) Ganoderma lucidum 20.5 15.3 79.3 2.0 43.8 3.4 [122]

Wheat straw (50%) + olive pruning residues (50%) Pleurotus ostreatus 56.8 19.9 71.7 1.9 16.5 6.5 [122]

Sawdust (90%) + rice bran (10%) Pleurotus eous 48.4–68.1 27.8 28.6 5.6 17.3 4.9 [127]

Sugarcane bagasse (50%) + rice straw (50%) Lentinus sajor-caju 83.9 30.9 33.8 ND 24.5 6.9 [128]

Cassava peel (50%) + corn cobs (50%) Pleurotus ostreatus 31.1–33.7 10.6–10.8 73.6–74.8 2.1–2.2 8.6–8.9 7.3–7.8 [120]

Hard wood sawdust (50%) + rice straw (50%) Hericium erinaceus 36.5–44.2 25.1 59.8 4.0 ND 11.0 [87]

Hard wood sawdust (50%) + wheat straw (50%) Hericium erinaceus 41.4–46.5 24.7 60.8 4.2 ND 10.3 [87]

Hardwood sawdust (30%) + corn stalk (60%)
+ rice bran (10%)

Auricularia
polytricha 27.3–41.0 11.1 76.1 0.9 ND 4.8 [129]

“ND” = not determined.
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4. Lignocellulolytic Enzyme Production by Mushroom Using Agro-Industrial Wastes

The decomposition of lignocellulosic materials is carried out by decomposers such as bacteria,
microfungi, mushrooms, earthworms, and woodlice, all of which play an important role in the
terrestrial carbon cycle [130–132]. Lignocellulose is a composite of three main biopolymers: cellulose,
hemicellulose and lignin. Due to the different bonding functions that exist among these polymers,
lignocellulose degradation requires the synergistic action of multiple carbohydrate-active enzymes.
These are involved in the assembly and breakdown of glycosidic bonds [132–134]. The degradation
of lignocellulosic biomass is achieved through cooperative activities of hydrolytic and oxidative
enzymes [134–136], as is shown in Figure 4. The hydrolytic system is responsible for cellulose and
hemicellulose degradations, whereas the oxidative system is known to participate in lignin degradation.

Figure 4. Scheme of the main enzymes involved in the lignocellulosic degradation process.

4.1. Cellulose Degradation Enzymes

Commonly, cellulose hydrolysis requires a combination of three main types of cellulase:
endo-1,4-β-d-glucanase (endoglucanase, EC 3.2.1.4), exo-1,4-β-d-glucanase or cellobiohydrolases
(exoglucanase, EC 3.2.1.91) and β-glucosidase (β-d-glucoside glucanhydrolase, EC 3.2.1.21), in order to
convert cellulose into oligosaccharides, cellobiose, and glucose [137,138]. The degradation of cellulose
by various cellulase enzymes is diagrammed in Figure 5. Endoglucanases preferentially hydrolyze
internalβ-1,4-glucosidic linkages in the cellulose chains, generating a number of reducing ends [138,139].
This enzyme also acts on cellodextrins, which are the intermediate product of cellulose hydrolysis,
and converts them to cellobiose and glucose. Exoglucanases release cellobiose from the reducing
end or the nonreducing end of the cellulose chain, facilitating the production of mostly cellobiose
which can readily be converted to glucose by β-glucosidases [136,140,141]. These enzymes may
also act on cellodextrins and larger cello-oligosaccharides, in which case they are commonly named
cellodextrinases [142]. Oligosaccharides released as a result of these activities are converted to glucose
by the action of cellodextrinases (EC 3.2.1.74), whereas the cellobiose released mainly by the action of
cellobiohydrolases is converted to glucose by β-glucosidases [139].
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Figure 5. Enzymes involved in cellulose degradation.

Cellulases are produced in a wide range of organisms such as plants, some animals, and certain
microorganisms including protozoans, bacteria, and fungi. Among these organisms, fungi have been
studied extensively for their cellulase producing capabilities, such as the genera Aspergillus, Penicillium,
Rhizopus and Trichoderma [143–146]. However, mushrooms are the most potent degraders of natural
lignocellulosic waste. They are mostly grown on litter, dead wood, or in soil and nature-rich cellulose [9].
Several previous reports have found that various mushrooms species can produce cellulase via solid
state fermentation (SSF) of agricultural or natural lignocellulosic waste [147–149]. Many agricultural
or natural lignocellulosic solid waste, especially different kinds of straw (wheat, sorghum, rice)
and sawdust (oak and pine), were used as a substrate or source for mushroom growth and cellulases
production [150–153]. Furthermore, other forms of lignocellulosic waste, such as peanut hulls,
mandarin peels, cotton waste, corn stovers and tree leaves (Fagus sylvatica), have also been used as
substrates to determine cellulase activity [150,154,155]. The high-value potential of these forms of
waste is encouraging as they can be sources that support the growth and cellulases production of
different mushroom species, namely Ganoderma, Grifola, Lentinula, Lentinus, Pleurotus, Piptoporus and
Trametes by SSF [152,156–159]. Different agricultural or natural lignocellulosic forms of waste that have
been fermented by various mushroom species are summarized in Table 5.
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Table 5. Production of enzymes in solid state fermentation of cellulose degradation by some mushrooms
using agro-industrial wastes.

Enzyme Agro-Industrial
Wastes Mushroom Species Activity Reference

Total cellulase

Wheat straw

Lentinula edodes 45–60 U/mL [151]
Pleurotus dryinus 41–120 U/mL [151,160]
Pleurotus ostreatus 665–1185 U/mL [151]

Pleurotus tuber-regium 505 U/mL [151]
Fomitopsis sp. 3.5 U/gds [159]

Tree leaves (Fagus
sylvatica)

Lentinula edodes 40–45 U/mL [151]
Pleurotus dryinus 205 U/mL [151]
Pleurotus ostreatus 14–15 U/mL [151]

Pleurotus tuber-regium 20 U/mL [151]

Sorghum straw

Pycnosporus sanguineus 0.8 U/gds [153]
Pleurotus ostreatus 1.3 U/gds [153]
Pleurotus eryngii 0.7 U/gds [153]

Phanerochaete chrysosporium 1.1 U/gds [153]
Trametes versicolor 1.0 U/gds [153]

Eucalyptus wood
chip

Wolfiporia cocos 1.4–8.3 U/gds [161]
Laetiporeus sulfureus 0.8–15.4 U/gds [161]
Poria medulla-panis 0.4–3.4 U/gds [161]

Pycnoporus coccineus 1.8–3.7 U/gds [161]
Phlebia tremellosa 0.6–2.0 U/gds [161]
Trametes versicolor 0.8–4.0 U/gds [161]

Endoglucanase

Wheat straw

Lentinus tigrinus 1230 U/gds [156]
Lentinula edodes 180–345 U/mL [151]

Pleurotus dryinus 910 U/mL [151]
Pleurotus ostreatus 185-245 U/mL [151]

Pleurotus tuber-regium 150 U/mL [151]
Piptoporus betulinus 83.5 U/gds [157]

Tree leaves (Fagus
sylvatica)

Lentinula edodes 40–65 U/mL [151]
Pleurotus dryinus 1130 U/mL [151]
Pleurotus ostreatus 25–1300 U/mL [151]

Pleurotus tuber-regium 150 U/mL [151]

Sorghum straw

Pycnosporus sanguineus 2.0 U/gds [153]
Pleurotus ostreatus 2.3 U/gds [153]
Pleurotus eryngii 1.4 U/gds [153]

Phanerochaete chrysosporium 4.0 U/gds [153]
Trametes versicolor 2.2 U/gds [153]

Sugarcane bagasse Lentinus sajor-caju 13.9–18.9 U/gds [162]
Pleurotus ostreatus 3.0 U/gds [163]

Sawdust

Trametes trogii 504 U/gds [164]
Coriolus versicolor 0.6 U/gds [165]

Ganoderma applanatum 0.1 U/gds [165]
Pycnoporus sanguineus 0.6 U/gds [165]

Trametes villosa 0.2 U/gds [165]
Pleurotus ostreatus 3.0 U/gds [163]
Lentinus sajor-caju 0.9 U/gds [163]

Rice straw
Pleurotus ostreatus 7.1 U/gds [163]
Lentinus sajor-caju 1.9 U/gds [163]

Oak sawdust Grifola frondosa 12.3 U/gds [152]
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Table 5. Cont.

Enzyme Agro-Industrial
Wastes Mushroom Species Activity Reference

Endoglucanase
Pine chip

Coriolus versicolor 2.4 U/gds [165]
Ganoderma applanatum 2.8 U/gds [165]
Pycnoporus sanguineus 4.8 U/gds [165]

Trametes villosa 3.9 U/gds [165]

Green tea waste Microporus xanthopus 38.6 U/gds [166]

Wheat straw Fomitopsis sp. 53.6 U/gds [159]

Exoglucanase

Oak sawdust Grifola frondosa 16.2 U/gds [152]

Rice straw
Pleurotus ostreatus 2.0 U/gds [163]

Lentinus sajor-caju 1.8 U/gds [163]

Sugarcane bagasse Pleurotus ostreatus 7.0 U/gds [163]
Lentinus sajor-caju 2.0 U/gds [163]

Sawdust
Pleurotus ostreatus 2.8 U/gds [163]
Lentinus sajor-caju 0.6 U/gds [163]

Corn stover Irpex lacteus 69.3 U/gds [167]

β -Glucosidase

Sorghum straw

Pycnosporus sanguineus 0.4 U/gds [153]
Pleurotus ostreatus 0.2 U/gds [153]
Pleurotus eryngii 0.2 U/gds [153]

Phanerochaete chrysosporium 1.1 U/gds [153]
Trametes versicolor 1.9 U/gds [153]

Eucalyptus wood
chip

Wolfiporia cocos 8.3–42.0 U/gds [161]
Laetiporeus sulfureus 7.6–37 U/gds [161]
Poria medulla-panis 2.7–10.5 U/gds [161]

Pycnoporus coccineus 8.0–22.0 U/gds [161]
Phlebia tremellosa 3.8–15.6 U/gds [161]
Trametes versicolor 3.8–20.0 U/gds [161]

Oak sawdust Grifola frondosa 2.3 U/gds [152]

Rice straw
Pleurotus ostreatus 2.5 U/gds [163]
Lentinus sajor-caju 1.2 U/gds [163]

Sugarcane bagasse Pleurotus ostreatus 3.5 U/gds [163]
Lentinus sajor-caju 2.6–12.3 U/gds [162,163]

Sawdust

Pleurotus ostreatus 2.2 U/gds [163]
Lentinus sajor-caju 0.2 U/gds [163]
Coriolus versicolor 0.5 U/gds [165]

Ganoderma applanatum 0.4 U/gds [165]
Pycnoporus sanguineus 0.4 U/gds [165]

Trametes villosa 0.5 U/gds [165]
Trametes trogii 0.89 U/gds [164]

Pine chip

Coriolus versicolor 0.3 U/gds [165]
Ganoderma applanatum 0.1 U/gds [165]
Pycnoporus sanguineus 0.8 U/gds [165]

Trametes villosa 0.5 U/gds [165]

Wheat straw
Piptoporus betulinus 78.8 U/gds [157]

Pleurotus dryinus 401 U/gds [160]
Lentinula edodes 0.1 U/gds [168]

Sorghum straw Pleurotus eryngii 0.23 U/gds [153]

Cellulase activity is mainly tested using a reducing sugar assay to determine cellulase hydrolysis
activity at the end of the production process [169]. The common enzyme activity assays consist of
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total cellulase assays, endoglucanase assays, exoglucanase assays and β-glucosidase assays [140].
Filter paper assay (FPA) is widely used to determine total cellulase activity. The degree of filter paper
activity is determined as the micromole of glucose equivalent liberated per minute of culture filtrate
under assay conditions [170]. Endoglucanase activity can be measured using the carboxymethyl
cellulose (CMC) as a substrate. This carboxymethyl cellulase (CMCase) is mainly measured by
examining the reducing sugars of enzymatic reactions with CMC based on the procedure described
by [171]. The exoglucanase activity mainly uses commercial Avicel as a substrate for measuring the
activity [169]. The β-glucosidase assay can be measured based on the procedure of Kubicek [172] using
chromogenic and nonchromogenic substrates such as p-nitrophenol-β-glucoside (pNPG) and cellobiose,
respectively [173,174]. Moreover, various reducing sugar assays, for instance, 3,5-dinitrosalicylic acid
(DNS), glucose oxidase (GOD) and high-performance liquid chromatography were also used.

4.2. Hemicellulose Degradation Enzymes

Hemicelluloses are usually classified based on the backbone sugars present in the structural
polymer with typical glucose galactose, xylose, mannose, and arabinose. The principal hemicelluloses
are comprised of xyloglucans, xylans, mannans, glucomannans, and mixed linkage β-glucans [175,176].
In order to digest hemicellulose, microorganisms need to be able to produce a variety of enzymes to
hydrolyze complex substrates with a synergistic action. Hemicellulolytic enzymes or hemicellulases
are glycoside hydrolases or carbohydrate esterases that are responsible for polysaccharide degradation.
The enzymes include xylanase (EC 3.2.1.8), β-xylosidase (EC 3.2.1.37), α-arabinofuranosidase
(EC 3.2.1.55) α-glucuronidase (EC 3.2.1.139), and β-mannosidases (EC 3.2.1.25) [134,138].

4.2.1. Xylanases

Xylan is a heteropolysaccharide and a major hemicellulose. The main chain of xylan consists
of β-1,4-linked d-xylopyranosyl residues, which are partially replaced with O-acetyl, l-arabinosyl
and 4-O-methyl-d-glucuronic acid. The xylan backbone is substituted by different side chains
with l-arabinose, d-galactose, d-mannoses, and glucouronic acid linked by glysosidic bonds and
ester bonds with ferulic acid [177–180]. Biodegradation of xylan requires diverse modes of action
of hydrolytic enzymes. Xylanases are a group of glycoside hydrolase enzymes that breakdown
hemicelluloses through the degradation of the linear polysaccharide xylan into xylose by catalyzing
the hydrolysis of the glycosidic linkage (β-1,4) of xylosides. The xylanolytic enzyme system includes a
mixture of endo-1,4-β-xylanases also called endo-xylanases, β-xylosidases, α-arabino- furanosidases,
α-glucuronidases and acetylxylanases, which attach to the specific site of xylan as is displayed in
Figure 6 [181,182]. Endo-xylanases randomly hydrolyze β-1,4-xylanopyranosyl linkages of xylan to
form xylo-oligosaccharides, xylotriose, xylobiose and xylose. The hydrolysis of xylans is not attacked
randomly but depends upon the degree of branching, chain length, and presence of substituents in the
substrate molecule [183].

β-Xylosidase attacks from the non-reducing end of xylo-oligosaccharides, xylotriose or xylobiose,
that are generated by the action of endo-xylanase and ultimately liberate xylose sugar (Figure 6).
Biomass can be used as a substrate for this enzyme production process. However, a limitation of the
commercial application of this substance is related to various factors such as their physical limitations,
the limited hydrolysis of xylans due to their diverged branched nature, the fact that their enzymes
are associated with a narrow pH range and thermal instability, their end product inhibition levels
and the cost of enzyme production. These comprise the unreachability of substrates to xylanase
enzymes [178]. The use of substrates with agricultural or industrial biomass for enzyme production
serves as an alternative way to overcome the limitations of the costs of enzyme production; however,
biomass pretreatment is sometimes needed to improve efficiency in the practical hydrolysis of biomass.
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Figure 6. Enzymes involved in xylan degradation.

Many microorganisms, such as fungi, bacteria and yeast, can degrade hemicellulose by producing
xylanases. A determination of xylanase activities can be analyzed by several methods. The plate
assay has been used for decades as a primary screening method to select xylanase producing strains.
The screening strains are cultured on agar medium containing xylan as their carbon source until clear
zones are observed (the xylan hydrolysis area) after being stained with Congo red dye [183] or Gram’s
iodine solution [184]. Plate assay methods rely on interactions between a dye and a polymeric substrate
for the indirect detection of hydrolysis but require the use of relevant controls and independent
confirmation of the relevant enzymatic activities. Xylans, such as oat spelt, beech wood [185],
and birch-wood xylans [186,187], was used as a substrate to determine endo-xylanase activity.
The enzyme activities were determined from the presence of reducing sugars as xylose equivalents
liberated from the enzymatic hydrolysis by the DNS method [188] or the Nelson [189] and Somogyi [190]
methods. However, xylans obtained from natural sources contain not only xylose residues but also
arabinose and glucuronic acid residues. Thus, comparisons of xylanase activity in various studies
have been difficult. Xylanase activity varies according to the source of the xylans. Other types of
substrates can be applied. Specifically, p-nitrophenyl-glycoside substrate (p-nitrophenyl esters with
substrate) can be used as a chromogenic substrate for the calorimetric assay of β-xylosidase activity.
The substrate is colorless in neutral or alkaline solution. After enzymatic hydrolysis, p-nitrophenol is
liberated as alkaline pH develops a yellow color that is suitable for the quantitative measurement of
the enzyme activity.

Multifunctional xylanolytic enzyme system is relatively common in fungi, actinomycetes and
bacteria [190,191]. A large variety of industrial xylanase enzymes are produced from various kind of
microorganisms [192]. SSF with batch processing has been used for the utilization of agro-industrial
waste [193]. However, very few studies have reported on the xylanolytic enzymes obtained from
mushroom on SSF (Table 6). These potential outcomes provide opportunities for scientists to explore
the hydrolytic potential of xylanase for the efficient saccharifcation of lignocellulosic biomass from
mushroom cultivation.

4.2.2. Mananases

The two most important and representative hemicelluloses are xylans and mannans. Mannans are
polysaccharides that consist of mannose-based backbones linked by β-1,4-linkage with variable degrees
of side substitutions. These polysaccharides are renewable resources and their enzymatic conversion
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is of great interest in the field of lignocellulose biotechnology [194]. The enzyme breakdown of
mannans is accomplished with β-mannanase (β-1,4-d-mannan mannohydrolase, EC 3.2.1.78) as it
randomly attacks the internal β-1,4-d-mannopyranosyl linkage within the main chain of various
mannan-based polysaccharides, such as galactomannans, glucomannans, and galactoglucomannans,
to release mannooligosaccharides (MOS), manotetrose, manotriose and manobiose [176].

The degradation of the mannan backbone is performed by the action of β-mannanases, and the
further degradation requires β-mannosidase (β-1,4-d-mannopyranoside hydrolase, EC 3.2.1.25) to
hydrolyze the terminal ends (non-reducing ends) of MOS into sugar-based mannose. Subsequently,
β-glucosidases remove 1,4-glucopyranose units at the non-reducing ends of the oligomers derived
from the degradation of glucomannan and galactoglucomannan [171,205] as is shown in Figure 7.
Xylanases and mannanases are important enzymes for the hydrolysis of hemicelluloses. β-mannan is
found in many feedstuffs including soybean meal, palm kernel meal, copra meal, and sesame meal
and other leguminous feeds [206]. β-Mannanases are widely applied to randomly hydrolyze the
β-1,4-mannopyranoside linkage of mannan-based polysaccharides in many industries.

Figure 7. Enzymes involved in mannan degradation.
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Table 6. Production of enzymes in solid state fermentation of hemicellulose degradation by some
mushrooms using agro-industrial wastes.

Enzyme Agro-Industrial Wastes Mushroom Species Activity Reference

Total xylanase

Tree leaves
(Fagus sylvatica)

Lentinula edodes 85–200 U/mL [151]
Pleurotus dryinus 2145 U/mL [151]
Pleurotus ostreatus 160–1400 U/mL [151]

Pleurotus tuber-regium 155 U/mL [151]

Wheat straw

Lentinula edodes 195–275 U/mL [151]
Pleurotus dryinus 1450 U/mL [151]
Pleurotus ostreatus 260–735 U/mL [151]

Pleurotus tuber-regium 260 U/mL [151]

Wheat bran

Fomes fomentarius 7–63 U/mL [154]
Ganoderma applanatum 3 U/mL [154]

Pleurotus ostreatus 16 U/mL [154]
Trametes hirsuta 8 U/mL [154]

Trametes ochracea 35 U/mL [154]
Trametes versicolor 21 U/mL [154]
Trametes pubescens 32 U/mL [154]

Trametes biforme 19 U/mL [154]

Endo-1,4-β-xylanase

Rice straw Pleurotus ostreatus 21 U/gds [195]

Sawdust Pleurotus ostreatus 9 U/gds [195]

Sugarcane bagasse Ganoderma lucidum 33 U/gds [196]

Tomato pomace Pleurotus ostreatus 9 U/gds [197]
Trametes versicolor 50 U/gds [197]

Jerusalem artichoke stalk Schizophyllum commune 106 U/gds [198]

Oak leaves
Marasmius quercophilus 73 U/gds [199]

Mycena inclinata 105 U/gds [199]
Pholiota lenta 83.2 U/gds [199]

Wheat straw
Pleurotus citrinopileatus 0.12 U/gds [200]

Pleurotus ostreatus 0.14 U/gds [200]

Pine wood chip Ceriporiopsis
subvermispora 0.25 U/gds [201]

Eucalyptus wood chip Ceriporiopsis
subvermispora 0.12 U/gds [201]

Soya bran Fomes sclerodermeus 31 U/gds [202]

Rice bran mixed rice husk Leucoagaricus meleagris 0.8 U/gds [203]

Sugarcane bagasse
mixed wheat bran

Pleurotus ostreatus 8.7 U/gds [204]
Ganoderma lucidum 16.3 U/gds [204]
Trametes versicolor 36.7 U/gds [204]

1,4-β-Xylosidase

Oak leaves
Marasmius quercophilus 1.7 U/gds [199]

Mycena inclinata 5.8 U/gds [199]
Pholiota lenta 1.6 U/gds [199]

Pine wood chip Ceriporiopsis
subvermispora 4.4 U/gds [201]

Eucalyptus wood chip Ceriporiopsis
subvermispora 2.6 U/gds [201]

Wheat straw
Pleurotus citrinopileatus 11.5 U/gds [200]

Pleurotus ostreatus 14.3 U/gds [200]

Sugarcane bagasse mixed wheat
bran

Ganoderma lucidum 0.4 U/gds [204]
Trametes versicolor 1.5 U/gds [204]
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Table 6. Cont.

Enzyme Agro-Industrial Wastes Mushroom Species Activity Reference

Endo-1,4-β-mannanase
Oak leaves

Marasmius quercophilus 3.4 U/gds [199]
Mycena inclinata 3.2 U/gds [199]

Pholiota lenta 11.8 U/gds [199]

Pine wood chip Ceriporiopsis
subvermispora 90.4 U/gds [201]

Eucalyptus wood chip Ceriporiopsis
subvermispora 52.2 U/gds [201]

1,4-β-Mannosidase Oak leaves
Marasmius quercophilus 5.9 U/gds [199]

Mycena inclinata 4.2 U/gds [199]

4.2.3. Arabinanases

Arabinanases are a group of hydrolytic enzymes that include endo-arabinanases (EC 3.2.1.99),
arabinosidases (EC 3.2.1.55), and α-L-arabinofuranosidase. These work synergistically to generate
l-arabinose from arabinan as is shown in Figure 8 [207–211]. The biodegradation of xylan
requires the cooperation of xylanases, β-xylosidase, α-l-arabinofuranosidase, α-glucuronidase,
and acetylxylanases [181,182]. The removal of the side groups of xylans is catalyzed by
α-l-arabinofuranosidases (E.C. 3.2.1.55), α-d-glucuronidases and acetylxylan esterases, which remove
acetyl and phenolic side branches and act synergistically on the complex polymer [178]. Fungi produce
extracellular arabinanases, a group of hydrolytic enzymes that include α-l-arabinofuranosidases
and endo-arabinanases to specifically release l-arabinose from polysaccharides including xylans and
pectin [212]. Importantly, α-l-arabinofuranosidases catalyze the hydrolysis of α-l-arabinofuranosidic
linkage at terminal non-reducing- α-l-1,2-, α-l-1,3- and α-l-1,5-arabinofuranosyl residues obtained
from different oligosaccharides and polysaccharides (α-l-arabinosides, arabinans, arabinoxylans,
and arabinogalactans) and act synergistically with other hemicellulases to completely breakdown
hemicellulose [212,213]. The l-arabinofuranoside substitutions on xylan strongly inhibit the action of
xylan-degrading enzymes, thus preventing the complete degradation of xylan to xylose units [213].
The α-l-arabinofuranosidases can be found in plants, bacteria and fungi [186].

Figure 8. Enzymes involved in arabinan degradation.
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The colorimetric method is used to determine α-l-arabinofuranosidases activity. Notably,
the p-nitrophenol-linked substrate, 4-nitrophenyl α-l-arabinofuranoside, is used for the enzyme assay
by determining the amount of p-nitrophenol released from the enzyme-substrate reaction [186,214,215].
Arabinoxylans, such as wheat four arabinoxylan and sugar beet arabinan, is also used for the
determination of enzyme activity [180] by monitoring the generation of arabinose from polysaccharide
substrates. Liberated arabinose can be determined by the DNS method [187].

4.3. Lignin Degradation Enzymes

Lignin degradation is the primordial step in lignocellulose degradation enabling the accessibility of
cellulose and hemicellulose [216,217]. Ligninolytic microorganisms can degrade lignins via the secretion
of oxidative enzymes, such as peroxidases and laccases, or by producing a source of heterogeneous
aromatics. Ligninolytic enzymes or ligninases are mainly comprised of laccases (Lac, EC 1.10.3.2),
lignin peroxidases (LiPs, EC 1.11.1.14), manganese peroxidases (MnPs, EC 1.11.1.13),
versatile peroxidases (VPs) and dye decolorizing peroxidases (DyPs, EC 1.11.1.19) [116,218].
These enzymes display less substrate specificity than cellulases and hemicellulases [124,218,219].
Additionally, Lac, LiP and MnP, and many other enzymes, such as aromatic acid reductase,
aryl alcohol dehydrogenase, catalase aromatic aldehyde oxidase, dioxygenase, quinone oxidoreductase,
vanillate hydroxylase, veratryl alcohol oxidase and versatile peroxidase, are also involved in lignin
digestion [219].

Mushroom species are most frequently reported as Lac and MnP producers and least frequently
reported as LiP and VP producers. Previous publications have reported that T. versicolor [220] and
Bjerkandera adusta [221] produce both oxidase (Lac) and peroxidase (MnP and LiP). Lentinula edodes [222],
P. eryngii [223] and Ceripotiopsis subvermispora [224] are lignin-degrading mushrooms that use Lac
and at least one of the peroxidases. Only Lac was produced from S. commune and only peroxidases
were produced from Phanerochaete chrysosporium [225,226]. Several publications have reported that
Ph. chrysosporium is an excellent lignin decomposer, and it has been suggested for its commercial use.
The ligninolytic enzymes were fermented in SSF using different agro-industrial waste, as is shown
in Table 7.

Table 7. Production of enzymes in solid state fermentation of lignin degradation by some mushrooms
using agro-industrial wastes.

Enzyme Agro-Industrial Wastes Mushroom Species Activity Reference

Laccase

Tree leaves (Fagus sylvatica)

Lentinula edodes 7–52 U/L [151]
Pleurotus dryinus 16 U/L [151]
Pleurotus ostreatus 6.3–8.0 U/L [151]

Pleurotus tuber-regium 2.1 U/L [151]

Wheat straw

Lentinula edodes 3.6–5.2 U/L [151]
Pleurotus dryinus 5.7 U/L [151]
Pleurotus ostreatus 1.1–10.1 U/L [151]

Pleurotus tuber-regium 10 U/L [151]
Pleurotus citrinopileatus 1.2–3.7 U/gds [200]

Wheat bran

Fomes fomentarius 7430–17510 U/L [154]
Ganoderma applanatum 1910 U/L [154]

Pleurotus ostreatus 9210 U/L [154]
Trametes hirsuta 7350 U/L [154]

Trametes ochracea 3930 U/L [154]
Trametes versicolor 17860 U/L [154]
Trametes pubescens 5319 U/L [154]

Trametes biforme 4960 U/L [154]

Wheat bran mixed corn straw Trametes versicolor 32.1 U/gds [227]
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Table 7. Cont.

Enzyme Agro-Industrial Wastes Mushroom Species Activity Reference

Laccase

Corn stalk Trametes versicolor 2,765.81 U/L [228]

Sawdust Coriolopsis gallica 200 U/gds [229]

Sugarcane bagasse Pleurotus ostreatus 151.6 U/gds [230]

Oat husk Cerrena unicolor 28.2 U/gds [231]

Pineapple leaves Ganoderma lucidum 42.7 U/gds [232]

Rice bran mixed wheat bran Stereum ostrea 24962 U/L [233]

Rice straw Schizophyllum commune 431.2 U/gsd [234]

Sugarcane bagasse mixed
wheat bran

Ganoderma lucidum 9.4 U/gds [204]

Pleurotus ostreatus 2.1 U/gds [204]

Trametes versicolor 1.9 U/gds [204]

Soya bran Fomes sclerodermeus 14.5 U/gds [202]

Manganese
peroxidase

Tree leaves (Fagus sylvatica)

Lentinula edodes 1.0–6.7 U/L [151]

Pleurotus dryinus 5.7 U/L [151]

Pleurotus ostreatus 7–15 U/L [151]

Pleurotus tuber-regium 20 U/L [151]

Wheat straw

Lentinula edodes 20–55 U/L [151]
Pleurotus dryinus 13 U/L [151]
Pleurotus ostreatus 7–12 U/L [151]

Pleurotus tuber-regium 2.2 U/L [151]
Pleurotus citrinopileatus 4.9 U/gds [200]

Wheat bran

Fomes fomentarius 350 U/L [154]
Pleurotus ostreatus 20 U/L [154]
Trametes versicolor 20–50 U/L [154]
Trametes biforme 570 U/L [154]

Oat husk Cerrena unicolor 20.4 U/gds [231]

Pineapple leaves Ganoderma lucidum 82.7 U/gds [232]

Rice bran mixed wheat bran Stereum ostrea 3895 U/L [233]

Rice straw Schizophyllum commune 1964 U/gsd [234]

Eucalyptus sawdust Lentinula edodes 700 U/gds [235]

Soya bran Fomes sclerodermeus 14.5 U/gds [202]

Sugarcane bagasse mixed
wheat bran

Ganoderma lucidum 1.9 U/gds [204]
Pleurotus ostreatus 2.3 U/gds [204]
Tramets versicolor 2.1 U/gds [204]

Barley husk Bjerkandera adusta 510 U/kgds [236]

Lignin
peroxidases

Jatropha waste Pleurotus ostreatus 49916 U/L [237]

Corn cob Ganoderma lucidum 561.4 U/gds [238]

Pineapple leaves Ganoderma lucidum 287.5 U/gds [232]

Rice bran mixed wheat bran Stereum ostrea 72.8 U/L [233]

Rice straw Schizophyllum commune 1467.3 U/gsd [234]

Barley husk Bjerkandera adusta 1700 U/kgds [236]

Sugarcane bagasse mixed
wheat bran

Ganoderma lucidum 0.6 U/gds [204]
Pleurotus ostreatus 0.5 U/gds [204]
Trametes versicolor 0.7 U/gds [204]

Versatile
peroxidase Banana peel Pleurotus eryngii 36 U/gds [239]
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4.3.1. Laccases

Laccases are a group of multicopper containing enzymes belonging to the blue multicopper oxidase
family. The enzymes are also known as polyphenol oxidases, among which laccases oxidize one-electron
of phenolic compounds with an associated reduction of oxygen to water as a by-product [240,241].
The enzymes do not require H2O2 for substrate oxidation. Lac can oxidize both phenolic aromatic
compounds such as methylated phenol, aromatic amine and non-phenolic aromatic compounds such
as veratryl alcohol in lignin to form phenoxy-free radicals. In this way, lignin degradation and lignin
structural conversion can occur [242], as is shown in Figure 9. This oxidation process produces phenoxy
radicals that can be converted to quinine by a second enzyme catalyzed reaction [166,243].

Figure 9. Typical reaction of laccase on phenols oxidation modifled from Minussi et al. [244].

Laccases contain four copper ions except for the laccase that is obtained from Phlebia radiata,
which has only two copper ions [245]. There are three types of Lac depending on the copper number at
the active site [246]. Type I: copper does not bind O2 but functions only as an electron transfer site.
The type I copper center consists of a single copper atom that is coordinated with two histidine residues
and one cysteine residue. In some cases, a methionine motif serves as a ligand with a trinuclear center.
The Type II copper center has two histidines and a water molecule that serves as a ligand. The type III
copper center contains two copper atoms that each possess three histidine ligands and are linked to one
another via a hydroxide bridging ligand. Most of the studies on Lac have reported that the fungi and
mushrooms present in basidiomycetes, deuteromycetes and ascomycetes act as Lac producers [247].
Among these fungi, the major Lac producers are white-rot fungi in basidiomycetes [246]. White-rot fungi
Pycnoporus cinnabarinus, Phlebia radiate, P. ostreatus, and T. versicolour are also known to produce one
isoform of Lac [248]. Cotton stalks, aromatic compounds, wood, and plant extracts were found
to be inducers for Lac production [249]. For Lac production, extracted 3-hydroxyanthranilic acid
(3-HAA) obtained from wheat straw was found to be a potential Lac stimulator [250]. The mixture
of coffee pulp and urea was also able to enhance the Lac activity in Py. sanguineus culture.
Some researchers have found a novel Lac obtained from T. orientalis, which has a molecular mass of
44.0 kDa. The enzyme contains a typical copper II binding domain and shares three N-glycosylation
sites. But it has no copper I binding domain [251] Dias and colleagues [252] have reported a new
zymogram dried 2,2’-azino-bis(3-ethylbenzo- thiazoline-6-sulfonic acid) (ABTS)-impregnated discs
assay for laccase activity detection, which is associated with easy assay and rapid screening. The laccase
activity was determined at a wavelength of 420 nm by measuring the oxidation of ABTS in phosphate
citrate buffer at a pH value of 4.0 [253]. The other guaiacol assay has been reported for laccase assay by
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Kalra et al. [254] to measure the reddish-brown color development at 450 nm as a consequence of the
oxidation of guaiacol by Lac.

4.3.2. Lignin Peroxidases

Lignin peroxidase (LiP) belongs to the family of oxidoreductases. LiP has ferric heme as an
electron donor which is able to reduce oxygen molecules to hydrogen peroxidase and superoxides.
LiP-Fe(III) uses H2O2 to oxidize aryl cation radicals as the initial substrate. The resulting amount of
the lacked electron LiP is not stable and draws electrons from the substrate for stability of the electron
condition. Finally, the oxidation cycle ends when LiP-Fe(IV) is turned to the resting ferric state [255].
This reaction exhibits a degree of stoichiometry of one H2O2 compound consumed per the amount of
aldehyde formed. LiP is a strong oxidant and is non-specific with a substrate. It can degrade both
structures of phenolic aromatic and non-phenolic aromatic compounds. Veratryl alcohol was found
to be an inducer of LiP that was produced from white-rot fungi. The molecular weight of LiP was
approximately 41 kDa and contains one mole of Fe protoporphyrin IX. It is a glycoprotein with isoelectric
point (pI) as 3.2–4.0 that displays high redox potential activity and an optimum pH value at 3.0 [250].

There are two methods for lignin peroxidase detection [250]. One involves the measurement of
veratraldehyde from veratryl alcohol oxidation using a UV spectrophotometer at 310 nm. One unit
of activity is defined as one micromole of veratryl alcohol oxidized in one min, while the activities
are reported in units/L (U/L). The 1,2-bis(3,4-dimethoxyphenyl) propane-1,3-diol is a substrate of this
enzyme, whereas 3,4-dimethoxybenzaldehyde, 1-(3,4-dimethoxyphenyl) ethane-1,2-diol, and H2O,
are its products, as is displayed in Figure 10.

Figure 10. General reaction catalyzed by lignin peroxidase. (A) cleavage of C-C of lignin, (B) oxidation
of veratryl alcohol is generally used to estimate the lignin peroxidase activity.

The other method is the Azure B assay. In this method, the relevant reaction assay contains Azure
B dye, H2O2, and sodium tartrate buffer (pH 4.5). The activity is measured at a 615 nm wavelength [256].
This method has been identified as a good assay to reduce the turbidity caused by organic materials
under the UV range. Mushrooms have been found as the first LiP producers, namely T. versicolor,
P. ostreatus, G. lucidum, and Bjerkandera spices [232,257].
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4.3.3. Manganese Peroxidase

Manganese peroxidase (MnP) belongs to the family of oxidoreductases and cannot react directly
with the lignin structure [250]. There are two groups: (1) Manganese dependent peroxidase is an
extracellular enzyme that requires both H2O2 for lignin oxidation, Mn2+ as a co-factor and (2) Manganese
independent peroxidase is an extracellular enzyme that requires H2O2 in lignin oxidation but does not
need Mn2+ (Figure 11) [258]. The major substrates of manganese peroxidase are low molecular weight
substances and organic acid compounds. In the mechanism cycle of lignin degradation, Mn2+ is an
electron donor and MnP is oxidized by H2O2 as follows:

“MnP + H2O2→MnP compound I + H2O” (1)

“MnP compound I + Mn2+
→MnP compound II + Mn3+” (2)

“MnP compound II + Mn2+
→MnP + Mn3+ + H2O” (3)

Figure 11. Lignin depolymerisation with manganese peroxidase [259].

The electron-lacking MnP is nonstable and accepts an electron from Mn2+ to Mn3+ that then reacts
with certain organic acid chelators such as oxalate, malonate, and lactate. The chelated-Mn3+ will act
as a mediator to oxidize simple phenols, amines, and phenolic lignins. The enzyme can oxidize both
phenolic and non-phenolic lignins [260]. The 3,3’-diaminobenzidine (DAB) assay [261] and manganese
peroxidase (MnP) assay [262] are the methods used for identification of peroxidase using 0.01% phenol
red or 2 mM 2,6-dimethoxyphenol (DMP) as a substrate.

Many mushroom species have been identified as MnP-producing fungi, especially P. ostreatus and
Ph. chrysosporium [263]. Manganese dependent peroxidase is produced from P. pulmonarius, which can
oxidize both non-phenolic and phenolic compounds for xenobiotic compound degradation. Kuhar and
co-workers [264] have reported that MnCl2 can induce MnP activity and has a high specificity for Mn2+

binding sites.

4.3.4. Versatile Peroxidase

Versatile peroxidase (VP) is also known as a hybrid peroxidase or polyvalent peroxidase for Mn2+

oxidation. VP includes both LiP and MnP activities. Consequently, VP is able to degrade a wider
range of substrates than non-hybrid enzymes. VP requires H2O2 as an electron acceptor to catalyze the
oxidative reaction at the heme center with the release of a water molecule [250]. VP is a heme-containing
glycoprotein that has a two-channel structure: the wider channel for access to H2O2 and the narrow
channel for access to manganese. Low molecular substrates will be oxidized at the heme center by
H2O2-ferric state binding (heme forming iron peroxide complex). This activated heme complex is
able to oxidize the aromatic substrate using Mn2+, and then secretes Mn3+ and water [265] (Figure 12).
VP has been produced by SSF of P. eryngii and P. ostreatus on wheat straw, sawdust, and banana
peels [223,266]. Pleurotus ostreatus and Bjerkandera sp. were cultured in glucose-peptone broth and
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glucose ammonium medium using submerged fermentation for VP production [267]. The molecular
weight and pI of VP obtained from P. eryngii were approximately 40 kDa and 4.1, respectively [268].
The VP activity can be determined by monitoring manganese oxidation and Reactive clack (RB5)
decolorization [267].

Figure 12. Scheme of the versatile peroxidase catalytic cycle [265].

4.3.5. Dye Decolorizing Peroxidases

Dye decolorizing peroxidases (DyPs) are a new family of glycoproteins that have one heme as a
cofactor occurring in basidiomycetous fungi and eubacteria. DyPs require H2O2 as an electron acceptor
and are similar to VP; however, DyPs can oxidize the high-redox potential anthraquinone dyes in
addition to typical peroxidase substrates such as RBs, phenols, veratryl alcohol [269,270]. There are
four types of DyPs from A to D based on their primary sequences [271]. However, type A DyPs has
been reported as the potential type that is most effective in lignin depolymerization. The important
characteristic of DyPs is the degradation of hydroxyl-free anthraquinone, which is not a substrate of
other peroxidases [270]. DyPs can oxidize certain phenolic compounds such as 2,6-dimethoxyphenol
and guaiacol. Only a few types of fungi can produce DyPs, especially type d-DyP, whereas they
are mostly present in bacteria (types A, B, and C). The first DyP was discovered in B. adusta [272].
The wood-rotting fungi A. auricula-jadae, Mycetinis scorodonius, Exidia glandulosa, P. sapidus DSM8266
and Mycena epipterygia have also been reported as DyPs producers [273,274]. White-rot fungus,
Irpex lacteus CD2, exhibited DyPs activity when it was grown in Kirk’s medium containing lignins [275].
Many previous publications have reported that DyPs might be important for the ligninolytic system
in white-rot fungi despite the fact that the biological roles of DyPs are unknown in terms of different
substrate specificities. The mechanism of DyPs is similar to that of plant peroxidase, which is known
to generate transient intermediates (compound I and compound II). The reaction of compound I with
1 eq electrons from a reducing substrate generates the [FeIV = O]+ intermediate compound II [271].
The optimum pH value of DyPs is acidic [276]. DyPs activity was assayed by the decolorization of an
anthraquinone dye RB19 at 595 nm [275].
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4.4. Application of Lignocellulolytic Enzymes in Bioprocessing

Enzyme technology possesses great potential to reduce environmental pollution and offers
potential benefits in the comprehensive utilization of lignocellulosic biomass. Lignocellulolytic enzymes
have received attention because of their potential applications in various agro-industrial bioprocesses,
such as the conversion of hemicellulosic biomass to fuels and chemical production, the clarification of
juices, the green processing of certain foods and beverages, the enhancement of animal digestibility
in feedstock, the delignification of paper and pulp, the improvement of fabric properties in the
textile industry and waste utilization [277–279]. Cellulase is widely used in the textile and laundry
detergent industries as it can play a part in the hydrolysis of cellulose and improve fabric properties
for the textile industry and for cleaning textiles in the laundry detergent industry [154,280]. The food
and beverage processing industries have used cellulase for the hydrolysis of cellulose during the
drying of coffee beans and for the extraction of fruits and vegetables in juice production [281,282].
Cellulase, α-l-arabinofuranosidases and other glycosidases have also been used in brewery and
wine production [213,277]. The enzymatic hydrolysis of grapes utilizes α-l-arabinofuranosidases
and other glycosidases to enhance the flavor of wine by the release of free terpenols, an important
aspect in the development of the aroma in wine. The enzyme treatment by α-l-arabinofuranosidases
during sourdough preparation in the bread industry delays the staling process of bread and increases
the shelf life of bread [213]. This results in economic benefits in terms of the preservation of bread
and bread storage issues. Enzyme technology has a significant potential to improve the properties
of pulp. Cellulases, xylanase and other hemicellulases are commonly used enzymes to assist in
pulp bleaching for the reduction of environmental pollution loads [283]. Cellulases are used to
improve the performance of dissolved pulp [277]. Additionally, α-l-arabinofuranosidases enhance
the delignification of pulp in the bleaching process as it can cleave the arabionose side chain that
inhibits the action of xylanase [213]. Laccase can be used for lignin removal in prehydrolysis of
lignocellulosic biomass [284]. Xylanolytic enzymes have potential applications across food and feed
industries [278]. A combination of α-l-arabinofuranosidases with cellulases, pectinases and xylanases
enhance the feed digestibility and utilization of polysaccharides in feedstuffs [186,213]. Arabinoxylans
are the major non-starch polysaccharide fractions in wheat, which increase digesta viscosity,
reduce the digestibility of nutrients and decrease the feed efficiency and growth performance when
fed to poultry, especially in broiler chickens [278]. Various reports have revealed the positive effects
of MOS on intestinal microflora, along with efficient intestinal structure and function. MOS-based
nutrition supplements are widely used in nutrition as a natural additive [279]. The treatment of copra
meal rich in β-mannan with mannanase has been reported to reduce the population of Salmonella
and Escherichia coli, increase the level of metabolizable energy and improve the nutrient digestibility
in broilers [285]. Olaniyi et al. [207] reported that the treatment of cassava peels and corn cobs with
mannanase increased the degradation of the complex carbohydrate fractions in the samples and resulted
in increasing the amount of crude protein and certain mineral contents. Kim et al. [273] reported
that the supplementation of β-mannanase for diet feeds does not mitigate the heat stress of aged
laying hens raised under hot climatic conditions. Saeed et al. [206] describes the promising beneficial
effects of β-mannanase in the poultry feed industry as the supplementation of β-mannanase in poultry
diets that positively improved blood glucose and anabolic hormone homeostasis, digestible energy,
and digestible amino acids. These enzymes have been used as food additives in the poultry raising
industry and have been employed in the improvement of nutritional properties of agricultural silage
and grain feed.

Manganese peroxidase is an important enzyme associated with the lignin and organic pollutant
degradation systems, for instance bioremediation, dye decolorization, pulp bleaching, biomechanical
pulping and in the production of a range of highly valuable products that have been obtained from
residual lignins [286]. DyPs can be applied in the treatment of wastewater that contain synthetic
dyes which are used in the manufacture of textiles, cosmetics, food, and pharmaceuticals. In the food
industry, DyPs obtained from M. scorodonius, namely the MaxiBright®brand, are used to whiten whey
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in cheese making [274]. Enzymes have been extensively used in various industries as well as in a
lot of the resulting products. Thus, genetic engineering is a powerful tool for the enhancement of
ligninolytic enzyme production. White-rot fungus, Ph. chrysosporium, is a good model for the study of
lignin degradation using DNA technology. The genome sequence encoded several genes such as ten
lignin peroxidases, five manganese peroxidases, and several other lignocellulolytic enzymes [287,288].
Laser mutagenesis of Phellinus igniarius SJZ2 (mutant) overexpressed Lac activity during 4 h of
fermentation and was increased by 36.84% in comparison with the wild type [242]. In addition
to the overexpression of Lac in Saccharomyces cerevisiae using the laccase III (cvl3) gene obtained
from T. versicolor, IFO1030 was secreted in the culture (45 U/L) [289]. Lignocellulosic enzymes are
obtained from mushrooms, especially white-rot basidiomycetes, which are interesting tools in the
biotechnological process that is used in a wide range of lignin substrates.

5. Conclusions

The utilization of agro-industrial waste in mushroom cultivation and the production of
lignocellulolytic enzymes can facilitate the reduction of some global waste management problems.
The cultivation of edible mushrooms using agro-industrial waste represents the bioconversion of that
waste into edible protein. Different types of agro-industrial waste can be used for the cultivation of
substrates for mushroom cultivation. However, the composition and availability of agro-industrial
waste in each area has been considered for the support of mushroom cultivation. Different mushroom
species and C/N ratios in substrates are the crucial factors that affect the production and chemical
composition of mushrooms. The nitrogen content of agro-industrial waste is low; therefore, this waste
is generally associated with other nitrogen sources. The selected suitable substrate and mushroom
species are important in obtaining the maximum yields.

Mushrooms seem to be the most important players in lignocellulose degradation by producing
both hydrolytic and oxidative enzymes. Hydrolytic enzymes (cellulases and hemicellulases) are known
to be responsible for polysaccharide degradation, while oxidative enzymes (ligninases) are responsible
for lignin modification and degradation. Current results indicate that agro-industrial waste has
been evaluated for its potential use in lignocellulosic enzyme production by mushrooms. However,
the variability of waste composition and mushroom species are influential in enzyme production.
Therefore, further studies are needed to demine the suitable conditions (substrates, mushroom species
and fermentation process) for effective lignocellulosic enzyme production in the pilot study and on the
industrial scale.
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